A graph theoretic approach to general Euler diagram drawing

نویسندگان

  • Gem Stapleton
  • John Howse
  • Peter J. Rodgers
چکیده

Euler diagrams are used in a wide variety of areas for representing information about relationships between collections of objects. Recently, several techniques for automated Euler diagram drawing have been proposed, contributing to the Euler diagram generation problem: given an abstract description, draw an Euler diagram with that description and which possesses certain properties, sometimes called well-formedness conditions. We present the first fully formalized, general framework that permits the embedding of Euler diagrams that possess any collection of the six typically considered well-formedness conditions. Our method first converts the abstract description into a vertex-labelled graph. An Euler diagram can then be formed, essentially by finding a dual graph of such a graph. However, we cannot use an arbitrary plane embedding of the vertex-labelled graph for this purpose. We identify specific embeddings that allow the construction of appropriate duals. From these embeddings, we can also identify precisely which properties the drawn Euler diagram will possess and ‘measure’ the number of times that each well-formedness condition is broken. We prove that every abstract description can be embedded using our method. Moreover, we identify exactly which (large) class of Euler diagrams can be generated. © 2009 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online region computations for Euler diagrams with relaxed drawing conventions

Euler diagrams are an accessible and effective visualisation of data involving simple set-theoretic relationships. Efficient algorithms to quickly compute the abstract regions of an Euler diagram upon curve addition and removal have previously been developed (the single marked point approach, SMPA), but a strict set of drawing conventions (called well-formedness conditions) were enforced, meani...

متن کامل

Generating and Drawing Area-Proportional Euler and Venn Diagrams

An Euler diagram C = {c1, c2, . . . , cn} is a collection of n simple closed curves (i.e., Jordan curves) that partition the plane into connected subsets, called regions, each of which is enclosed by a unique combination of curves. Typically, Euler diagrams are used to visualize the distribution of discrete characteristics across a sample population; in this case, each curve represents a charac...

متن کامل

Layout Metrics for Euler Diagrams

An alternative term for these diagrams is “Euler-Venn diagrams” but they are often inaccurately called “Venn diagrams”. Venn diagrams often look similar, but must contain all possible intersections of contours. In contrast, Euler diagrams contain any desired combination of intersections between the contours. Visualizations of Venn diagrams are often created by taking advantage of the symmetries...

متن کامل

Force - Directed Layout for Euler Diagrams Luana

Euler diagrams are the only diagrams that intuitively represent containment, intersection and exclusion of data, but none of the current automatic diagram layout techniques produce good layouts in a reasonable time. We adopt a force-directed approach to automatically layout aesthetically pleasing Euler diagrams in a relatively fast time. A Java prototype demonstrates our novel force model.

متن کامل

Poster: Force-Directed Layout for Euler Diagrams

Euler diagrams are the only diagrams that intuitively represent containment, intersection and exclusion of data, but none of the current automatic diagram layout techniques produce good layouts in a reasonable time. We adopt a force-directed approach to automatically layout aesthetically pleasing Euler diagrams in a relatively fast time. A Java prototype demonstrates our novel force model.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 411  شماره 

صفحات  -

تاریخ انتشار 2010